Cryptographic Asynchronous Multi-Party Computation with Optimal Resilience
نویسندگان
چکیده
We consider secure multi-party computation in the asynchronous model and present an efficient protocol with optimal resilience. For n parties, up to t < n/3 of them being corrupted, and security parameter κ, a circuit with c gates can be securely computed with communication complexity O(cnκ) bits. In contrast to all previous asynchronous protocols with optimal resilience, our protocol requires access to an expensive broadcast primitive only O(n) times — independently of the size c of the circuit. This results in a practical protocol with a very low communication overhead. One major drawback of a purely asynchronous network is that the inputs of up to t honest parties cannot be considered for the evaluation of the circuit. Waiting for all inputs could take infinitely long when the missing inputs belong to corrupted parties. Our protocol can easily be extended to a hybrid model, in which we have one round of synchronicity at the end of the input stage, but are fully asynchronous afterwards. In this model, our protocol allows to evaluate the circuit on the inputs of every honest party.
منابع مشابه
An Asynchronous Multi-Party Computation Protocol
We consider secure multi-party computation in the asynchronous model and present an efficient protocol with optimal resilience. For n parties, up to t < n/3 of them being corrupted, and security parameter κ, a circuit with c gates can be securely computed with communication complexity O(cnκ) bits. In contrast to all previous asynchronous protocols with optimal resilience, our protocol requires ...
متن کاملSimple and Efficient Perfectly-Secure Asynchronous MPC
Secure multi-party computation (MPC) allows a set of n players to securely compute an agreed function of their inputs, even when up to t players are under the control of an adversary. Known asynchronous MPC protocols require communication of at least Ω(n) (with cryptographic security), respectively Ω(n) (with information-theoretic security, but with error probability and non-optimal resilience)...
متن کاملUpper Bounds on the Communication Complexity of Cryptographic Multiparty Computation
We give improved upper bounds on the communication complexity of optimally-resilient secure multiparty computation in the cryptographic model. We consider evaluating an n-party randomized function and show that if f can be computed by a circuit of size c, then O(cnκ+nκ) is an upper bound for active security with optimal resilience t < n/2 and security parameter κ. This improves on the communica...
متن کاملUpper Bounds on the Communication Complexity of Optimally Resilient Cryptographic Multiparty Computation
We give improved upper bounds on the communication complexity of optimally-resilient secure multiparty computation in the cryptographic model. We consider evaluating an n-party randomized function and show that if f can be computed by a circuit of size c, then O(cn2κ) is an upper bound for active security with optimal resilience t < n/2 and security parameter κ. This improves on the communicati...
متن کاملAsynchronous Multi-Party Computation with Quadratic Communication
We present an efficient protocol for secure multi-party computation in the asynchronous model with optimal resilience. For n parties, up to t < n/3 of them being corrupted, and security parameter κ, a circuit with c gates can be securely computed with communication complexityO(cnκ) bits, which improves on the previously known solutions by a factor of Ω(n). The construction of the protocol follo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004